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In	 this	 study,	we	 analyze	 a	 felt	 production	 system	with	 unique	 requirements,	 such	 as	
maintaining	 machine	 speeds	 within	 specific	 limits	 to	 facilitate	 successful	 chemical	
reactions.	By	 incorporating	machine	speed	constraints	and	restrictions	on	both	work-
in-process	 (WIP)	 and	 end-product	 inventories,	 we	 aim	 to	 determine	 the	 optimal	
production	quantities	 for	each	felt	 type	and	the	corresponding	machine	speeds	over	a	
defined	 planning	 horizon.	 The	 objective	 is	 to	minimize	 total	 costs,	 including	machine	
setup	and	production	costs	as	well	as	WIP	and	end-product	inventory	holding	costs.	To	
achieve	this,	we	introduce	the	Machine	Speed	Optimization	(MSO)	problem	and	adapt	it	
to	 the	 specific	 requirements	 of	 a	 felt	 manufacturing	 company	 operating	 in	 Istanbul,	
Türkiye.	 The	 MSO	 problem	 is	 formulated	 as	 a	 mixed-integer	 linear	 programming	
(MILP)	model,	which	is	NP-hard	to	solve	for	optimal	production	decisions.	We	validate	
the	 MSO	 model	 using	 the	 felt	 manufacturing	 company's	 case	 over	 five	 periods,	
demonstrating	its	effectiveness	in	automating	production	planning	and	machine	speed	
decisions.	The	simulations	for	a	5-day	planning	horizon	demonstrate	a	cost	reduction	of	
3853	TL,	a	24%	decrease	in	WIP	inventory,	and	up	to	a	15%	improvement	in	machine	
utilization	 compared	 to	 the	 current	 practices	 of	 the	 felt	 manufacturing	 company.	
Additionally,	the	optimized	machine	speeds	achieved	through	the	MSO	model	enable	the	
system	 to	 increase	 throughput	 by	 11%.	 Experimental	 analysis	 of	 computational	
complexity	 reveals	 that	 the	MSO	model	 can	generate	an	optimal	6-month	production	
plan,	including	machine	speeds,	in	under	one	hour.	

	
	

KAPASİTELİ	BİR	KEÇE	ÜRETİM	SİSTEMİNDE	MAKİNE	HIZI	EN	İYİLEME	PROBLEMİ	
Anahtar	Kelimeler		 Öz	
Keçe	üretimi	
Parti	Büyüklüğü		
Makine	hızı	
Karma-tamsayılı	
programlama	

Bu	 çalışmada,	 kimyasal	 reaksiyonların	 başarılı	 bir	 şekilde	 gerçekleşmesini	 sağlamak	
için	makine	hızlarının	belirli	sınırlar	içinde	tutulması	gibi	kendine	özgü	gereksinimlere	
sahip	 bir	 keçe	 üretim	 sistemi	 ele	 alınmıştır.	Makine	 hızı	 kısıtları	 ve	 hem	 yarı	mamul	
(YM)	hem	de	nihai	ürün	 stok	 sınırlamaları	dikkate	alınarak,	her	keçe	 türü	 için	 en	 iyi	
üretim	miktarlarının	ve	 ilgili	makine	hızlarının	belirlenmesi	amaçlanmaktadır.	Amaç,	
makine	kurulum	ve	üretim	maliyetleri	ile	YM	ve	nihai	ürün	stok	tutma	maliyetlerini	en	
küçüklemektir.	Bu	doğrultuda,	Makine	Hızı	En	İyileme	(MHE)	problemi	tanımlanmış	ve	
İstanbul,	 Türkiye'de	 faaliyet	 gösteren	 bir	 keçe	 üretim	 firmasının	 gereksinimlerine	
uyarlanmıştır.	MHE	problemi,	 en	 iyi	üretim	kararlarının	bulunmasının	NP-zor	olduğu	
karma-tamsayılı	doğrusal	programlama	modeli	olarak	 ifade	edilmiştir.	Önerilen	MHE	
modelinin	 üretim	 planlaması	 ve	 makine	 hız	 kararlarının	 otomasyonu	 konusunda	
etkinliği	keçe	üretim	firmasının	beş	dönemlik	verileri	üzerinde	doğrulanmıştır.	5	günlük	
planlama	 ufku	 için	 yapılan	 simülasyonlar,	 firmanın	 mevcut	 uygulamasına	 kıyasla	
toplam	 maliyette	 3853	 TL	 azalma,	 YM	 stoklarında	 %24	 düşüş	 ve	 makine	 kullanım	
oranında	%15’e	varan	iyileşme	sağlandığını	göstermektedir.	Ayrıca,	MHE	modeli	ile	en	
iyilenen	makine	hızları,	 sistemin	üretim	kapasitesini	%11	arttırmıştır.	MHE	modelinin	
karmaşıklığına	 dair	 deneysel	 analizler,	 modelin	 makine	 hızlarını	 içeren	 6	 aylık	 bir	
üretim	planını	bir	saatten	daha	kısa	sürede	en	iyileyebildiğini	ortaya	koymuştur.		
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1.	Introduction	

The	Lot	Sizing	(LS)	problem	focuses	on	determining	the	
optimal	production	quantities	of	items	over	a	planning	
horizon	 to	minimize	 setup,	 production,	 and	 inventory	
holding	costs	(Karimi,	Ghomi	and	Wilson,	2003;	Quadt,	
2004).	 Identifying	 the	 optimal	 production	 quantities	
enables	 informed	 decision-making	 to	 enhance	 system	
performance	 and	 productivity,	 thereby	 boosting	 the	
company's	competitiveness	in	the	market.	

In	a	production	system,	the	end-product	can	consist	of	
discrete	items,	such	as	metal	parts	produced	by	a	mold,	
or	non-discrete	items,	such	as	float	glass	or	felt,	where	
raw	 materials	 flow	 continuously	 through	 machines	
(Özdamar	and	Bozyel,	2000;	Özyörük	and	Erol,	2000).	
When	 resources	 like	 machine	 time,	 manpower,	
inventory,	 or	 budget	 are	 constrained,	 the	 LS	 problem	
becomes	 a	 Capacitated	 LS	 Problem	 (CLSP)	 (Ganesh,	
2019).	While	the	single-item	uncapacitated	LS	problem	
can	be	solved	in	polynomial	time	(Wagner	and	Whitin,	
1958),	 the	 single-item	 CLSP	 is	 classified	 as	 NP-hard	
(Florian,	Lenstra	and	Kan,	1980).	

Depending	 on	 the	 application,	 the	 LS	 problem	 may	
have	 various	 extensions,	 such	 as	 incorporating	
machine	 setups	 for	 each	product	 type,	 allowing	early-
period	 demand	 fulfillment	 through	 backlogging,	
imposing	time	restrictions	on	demand	(time	windows),	
or	enabling	simultaneous	production	of	multiple	items	
in	 a	 single	 production	 run	 (co-production),	 among	
others	(Jans	and	Degraeve,	2008;	Kimms,	2012).	

Koca,	Yaman	and	Aktürk	(2015)	addressed	a	CLSP	with	
stochastic	demands	and	controllable	processing	times.	
The	 authors	 formulated	 the	 problem	 as	 a	 non-linear	
Mixed-Integer	 Programming	 (MIP)	 model	 to	 optimize	
machine	speeds	and	minimize	overall	production	costs.	
Since	 the	 problem	 is	 NP-Hard,	 the	 authors	
strengthened	 their	 formulation	 using	 second-order	
cone	 programming	 to	 obtain	 exact	 solutions	 within	
acceptable	computation	times.	Their	findings	indicated	
that	 the	most	 significant	 cost	 improvements	 occurred	
in	instances	with	high	machine	setup	costs	and	medium	
capacity	 levels.	 	 However,	 their	 approach	was	 limited	
to	a	capacitated	single-machine,	single-product	system.	

Akbalik,	 Penz	 and	 Rapine	 (2015)	 explored	 another	
CLSP	extension	by	introducing	inventory	bounds.	They	
demonstrated	 that	 a	 single-item	 problem	 with	
stationary	 production	 capacity,	 time-dependent	
inventory	bounds,	and	concave	costs	could	be	solved	to	
optimality	 in	polynomial	time.	However,	 for	the	multi-
item	version,	the	problem	becomes	strongly	NP-hard.	

The	 literature	 includes	 several	 studies	 addressing	
specific	 implementations	 of	 the	 LS	 problem	 across	
various	 industries	 (Ramya,	 Rajendran,	 Ziegler,	
Mohapatra	and	Ganesh,	2019).	For	example,	Martinez,	
Toso	and	Morabito	(2016)	investigated	the	LS	problem	
in	 the	 molded	 pulp	 packaging	 industry	 to	 determine	

optimal	 molding	 patterns	 for	 the	 molding	 machine	
alongside	 lot	 sizing	 and	 scheduling	 decisions.	 They	
developed	 a	 MIP	 model	 to	 minimize	 total	 setup	 and	
inventory	 costs	 while	 accounting	 additional	 technical	
constraints.	 Despite	 the	 problem	 is	 NP-hard,	 the	
authors	 did	 not	 propose	 any	 heuristic	 approaches	 for	
their	production	planning	and	process	selection	model.	

In	the	furniture	industry,	wooden	parts	need	to	be	cut	
for	 assembling	 the	 final	 products.	 In	 this	 context,	
Gramani,	 França	 and	 Arenales	 (2009)	 integrated	 the	
cutting	stock	and	production	planning	processes	into	a	
single	mathematical	model.	They	proposed	a	heuristic	
method	based	on	Lagrangian	relaxation,	which	allowed	
them	 to	 handle	 the	 lot-sizing	 and	 cutting	 stock	
subproblems	 separately,	 achieving	 computational	
efficiency.	

Remanufacturing	worn-out	products	to	restore	them	to	
a	 like-new	 condition	 is	 common	 in	 various	 industries,	
including	 single-use	 cameras,	 car	 engines,	 and	
automotive	service	parts.	Naeem,	Dias,	Tibrewal,	Chang	
and	Tiwari	(2012)	considered	a	single-item	dynamic	LS	
problem	 with	 both	 manufacturing	 and	
remanufacturing	 options.	 Their	 model	 allowed	 for	
backlogging,	 i.e.,	 the	 demands	 of	 earlier	 periods	 could	
be	 satisfied	 later.	 The	 objective	was	 to	minimize	 total	
production,	 holding,	 and	 backlog	 costs.	 The	 solution	
employed	 dynamic	 programming,	which	 could	 handle	
both	 deterministic	 and	 stochastic	 demand	 patterns,	
variable	 manufacturing	 unit	 costs,	 and	 backlogging.	
The	flexibility	of	their	approach	is	a	notable	advantage	
of	their	solution	method.	

In	 third-party	 warehousing	 systems,	 supply	 contracts	
often	 allow	 customer	 demand	 to	 be	 fulfilled	 within	 a	
specified	 time	 window	 without	 incurring	 penalties	
(Chung-Yee,	 Çetinkaya	 and	 Wagelmans,	 2000).	 The	
authors	 demonstrated	 that	 extending	 the	 single-item	
LS	 model	 to	 include	 time	 windows	 can	 be	 solved	 in	
polynomial	 time	 using	 a	 dynamic	 programming	
approach.	

On	 the	 other	 side,	 Brahimi,	 Dauzere-Peres	 and	 Najid	
(2005)	 noted	 that	 the	 multi-item	 CLSP	 with	 time	
windows	 is	 strongly	 NP-hard.	 To	 address	 this	
complexity,	 they	 proposed	 alternative	 mathematical	
formulations	 and	 developed	 Lagrangian	 heuristics	
based	on	relaxing	various	constraint	sets.	Among	these,	
the	 best	 heuristic	 performance	 was	 achieved	 by	
relaxing	 only	 the	 capacity	 constraints.	 Additionally,	
Brahimi	 et	 al.	 (2005)	 enhanced	 the	 solution	 quality	
further	 by	 integrating	 valid	 inequalities	 into	 their	
formulations.	

Wu,	 Shi	 and	 Duffie	 (2010)	 addressed	 the	 multi-item	
CLSP	 with	 product-dependent	 setup	 times	 on	
machines.	 Their	 approach	 combined	 a	 column	
generation	 algorithm	with	 a	 relax-and-fix	 heuristic	 to	
tackle	the	problem	efficiently.	Similarly,	Yanzhi,	Yi	and	
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Wang	 (2012)	 investigated	 the	 same	 problem	 and	
proposed	 a	 three-stage	 solution	 method.	 In	 the	 first	
stage,	 they	 preprocessed	 the	 instance	 to	 account	 for	
joint	 setup	 costs.	 The	 second	 stage	 constructed	 an	
initial	 feasible	 solution	 using	 a	 period-by-period	
heuristic.	 Finally,	 in	 the	 third	 stage,	 they	 refined	 the	
solution	 by	 solving	 a	 series	 of	 subproblems,	 further	
enhancing	the	overall	result.	

Absi,	 Detienne	 and	 Dauzere-Peres	 (2013)	 studied	 the	
CLSP	 with	 product-dependent	 setup	 times	 and	 lost	
sales.	 They	 approached	 the	 problem	 by	 relaxing	
capacity	 constraints	 and	 solving	 single-item	
uncapacitated	 LS	 problems	with	 lost	 sales.	 To	 ensure	
capacity	 constraints	 were	met,	 they	 employed	 a	 non-
myopic	 heuristic	 strategy	 to	 refine	 the	 subproblem	
solutions	 and	 align	 them	 with	 the	 machine	 capacity	
limits.	 In	 a	 related	 extension,	 Ben	 Ammar,	 Avadi	 and	
Masmoudi	 (2020)	 addressed	 a	 multi-item	 CLSP	 with	
setup	 times	 and	 backlogging,	 allowing	 demands	 from	
earlier	 periods	 to	 be	 fulfilled	 later.	 The	 authors	
developed	 a	 multi-objective	 particle	 swarm	
optimization	 heuristic	 designed	 to	 simultaneously	
minimize	 total	 costs	 and	 total	 inventory	 levels,	
providing	 an	 effective	 approach	 for	 balancing	
competing	objectives	in	such	systems.	

Designing	 sustainable	 production	 systems	 by	
considering	 energy	 consumption	 in	 job	 shops	 is	 of	
critical	importance.	In	this	context,	Masmoudi,	Yalaoui,	
Quazene	 and	 Chehade	 (2016)	 investigated	 the	 multi-
item	CLSP	with	 an	 added	 focus	 on	minimizing	 energy	
consumption.	The	energy	consumption	was	modeled	as	
a	function	of	the	power	requirements	of	the	machines.	
They	 formulated	 the	 problem	 as	 a	 MIP	 model	 and	
proposed	a	fix-and-relax	heuristic	method	to	efficiently	
solve	 the	 problem,	 balancing	 production	 costs	 with	
energy	usage.	

Shabtay	and	Steiner	(2007)	provided	a	comprehensive	
review	 of	 the	 literature	 on	 scheduling	 problems	
involving	 controllable	 processing	 times.	 Building	 on	
this	 area,	Geng	and	Yuan	 (2023)	examined	 the	 single-
machine	 multiple-project	 scheduling	 problem	 with	
controllable	 processing	 times.	 Their	 objective	 was	 to	
minimize	 the	 total	 cost	 of	 altering	 machine	 speeds	
while	 reducing	 the	weighted	 number	 of	 tardy	 jobs	 in	
the	 schedule.	 They	 demonstrated	 that	 the	 problem	 is	
NP-hard	 and	 proposed	 a	 dynamic	 programming	 (DP)	
algorithm	to	solve	it.		

Similarly,	Levin	and	Shusterman	(2023)	studied	single-
machine	 preemptive	 scheduling	 with	 continuous	
controllable	 processing	 times.	 Their	 goal	 was	 to	
maximize	the	total	reward	for	early	task	completion	by	
adjusting	machine	speeds	dynamically.	They	developed	
a	pseudo-polynomial	DP	algorithm,	which	was	 further	
refined	 into	 a	 Fully	 Polynomial	 Time	 Approximation	
Scheme	(FPTAS).	However,	these	models	are	limited	to	
single-machine	 scenarios	 and	 need	 to	 be	 extended	 to	

multi-machine	environments	to	address	more	complex	
and	practical	scheduling	challenges.	

Wang,	 Wu,	 Chu	 and	 Yu	 (2022)	 addressed	 flexible	
machine	 speeds	 in	 an	 unrelated	 parallel	 machine	
environment	 with	 machine-	 and	 sequence-dependent	
setup	 costs.	 Their	 objective	 was	 to	 maximize	 the	
difference	 between	 the	 total	 realized	 state	 of	 all	 jobs	
and	 the	 makespan,	 using	 a	 logic-based	 Benders	
decomposition	approach	for	their	MIP	model.	However,	
their	 method	 is	 specifically	 tailored	 to	 unrelated	
parallel	 machines	 and	 is	 not	 applicable	 to	 items	 that	
follow	different	 production	 sequences	 across	multiple	
machines.		

In	 flow	 shops,	 controlling	 processing	 times	 can	
significantly	impact	energy	consumption.	Renna	(2023)	
proposed	two	heuristic	control	policies,	centralized	and	
distributed,	to	manage	processing	times	in	a	flow	shop	
under	 limited	 budget	 and	 energy	 constraints.	 The	
distributed	policy	relied	on	a	multi-agent	architecture,	
where	 stations	 exchanged	 their	 current	 state	
information	with	 neighboring	 stations	 at	 each	 period.	
Conversely,	 the	 centralized	 policy	 provided	 more	
efficient	 delivery	 of	 items	 with	 fewer	 time	 delays	
compared	to	the	distributed	policy,	as	expected.	While	
both	 approaches	 showed	 promise,	 being	 heuristic	
methods,	 they	 still	 offer	 significant	 room	 for	
improvement	in	efficiency	and	effectiveness.	

This	study	contributes	to	the	 literature	by	 introducing	
an	 extension	 of	 the	 finite	 horizon	 LS	 problem	
specifically	 designed	 for	 a	 felt	 production	 system,	
integrating	machine	capacity	constraints	and	inventory	
bounds	 on	 both	 end-products	 and	 WIP.	 In	 the	 felt	
production	 process,	 machines	 can	 handle	 semi-
products	 uniformly,	 irrespective	 of	 their	 final	 product	
types,	 eliminating	 product-dependent	 setup	 costs.	
Additionally,	 backlogging	 is	 prohibited	 to	 ensure	 on-
time	delivery	of	customer	demands.	

To	promote	sustainability,	we	extend	the	traditional	LS	
problem	 to	 the	 Machine	 Speed	 Optimization	 (MSO)	
problem	 by	 incorporating	 machine	 speed-dependent	
operating	 costs,	 thereby	 minimizing	 energy	
consumption	 as	 part	 of	 the	 production	 planning	
process.	 Since	 energy	 usage	 correlates	 directly	 with	
machine	speeds,	we	optimize	execution	speeds	for	each	
machine	 across	 all	 planning	 periods.	 The	 proposed	
MSO	model	contributes	to	the	literature	by	addressing	
the	simultaneous	challenges	of	managing	a	continuous-
flow,	multi-product	 production	 system	 on	 capacitated	
multi-machines	 within	 an	 inventory-constrained	
environment,	while	also	optimizing	machine	speeds	for	
energy	 efficiency.	 This	 dual	 focus	 on	 production	
planning	 and	 sustainability	 makes	 the	 MSO	 model	 a	
novel	approach	for	felt	manufacturing	systems.	
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This	paper	can	be	summarized	as	follows:	

• We	 address	 a	 capacitated	 multi-item	 MSO	
problem	 in	 job	 shop	 systems,	where	machine	
speeds	 can	 be	 adjusted	 to	 reduce	 the	 overall	
production	cost.	

• Specifically,	 we	 examine	 a	 felt	 production	
system	 where	 products	 continuously	 flow	
according	 to	 their	 production	 routes	 across	
multiple	machines.	

• For	 this	 capacitated	 felt	 production	
environment,	we	propose	 a	MILP	 formulation	
to	optimally	control	the	processing	times	while	
minimizing	 the	 total	 production	 cost.	 	 This	
model	extends	the	CLSP	(see	Section	3).		

• We	adapt	our	MSO	model	 to	a	 felt	production	
company	 operating	 in	 İstanbul,	 Türkiye,	 as	 a	
case	study	(see	Section	4).		

• We	 conduct	 computational	 experiments	 on	
this	 case	 study	 to	 demonstrate	 the	
effectiveness	 of	 sustainable	 production	
control.	 Furthermore,	 we	 experimentally	
demonstrate	 the	 computational	 complexity	 of	
the	 MSO	 model	 using	 different	 demand	
scenarios	 and	 planning	 horizon	 parameters	
(see	Section	5).	

In	 the	 rest	 of	 the	 paper,	 we	 formally	 define	 the	 MSO	
problem	 for	 a	 felt	 production	 system	 in	 Section	 2,	
develop	 a	 MILP	 formulation	 for	 the	 MSO	 problem	 in	
Section	3,	 introduce	a	case	study	based	on	an	existing	
felt	manufacturing	 company	 in	 Section	 4,	 provide	 the	
experimental	 results	 obtained	 from	 the	 case	 study	 in	
Section	 5.	 Section	 6	 concludes	 the	 paper	 with	 some	
remarks	and	comments	on	the	future	research	tracks.	

2.	Problem	Definition	

In	 this	 section,	 we	 present	 the	 machine	 speed	
optimization	 problem,	 an	 extension	 of	 CLSP,	
specifically	designed	for	a	felt	production	system.	

Felt	 is	 a	 textile	 material	 produced	 by	 matting	 fibers,	
such	 as	 wool	 or	 synthetic	 fibers,	 through	 a	 process	
known	 as	 felting.	 The	 production	 begins	 with	 a	
cleaning	step,	where	the	fibers	are	washed,	followed	by	
a	carding	step,	where	fibers	are	aligned	using	combs	on	
a	carding	machine	to	ensure	uniform	felt	production.	

In	 the	 laying	 step,	 the	 fibers	 are	 arranged	 in	multiple	
layers	 to	 form	 a	 web,	 which	 is	 then	 moistened	 with	
water	 in	 the	 wetting	 step	 to	 promote	 bonding.	
Depending	 on	 the	 product	 type,	 the	wetting	 step	may	
also	 involve	 the	 application	 of	 specific	 chemicals	 or	
dyes	to	achieve	desired	properties.	

In	 the	 felting	 step,	 the	 wet	 fiber	 web	 is	 subjected	 to	
pressure,	facilitating	the	interlocking	of	fibers	to	form	a	
cohesive	material.	 This	 is	 followed	by	 the	 rinsing	 and	

drying	 steps,	 where	 the	 felt	 is	 thoroughly	 rinsed	 to	
eliminate	residual	soap	or	chemicals	and	then	dried	to	
achieve	the	desired	texture.	Finally,	in	the	cutting	step,	
a	cutting	machine	trims	the	felt	into	specific	shapes	or	
sizes,	completing	the	production	process.	

In	 a	 felt	 production	 system,	 there	 are	 𝐼	 products,	
represented	by	the	set	ℐ = {1,… , I},	as	given	in	Table	1.	
These	products	 flow	through	𝑀	machines,	denoted	by	
the	 set	 ℳ = {1,… ,𝑀}.	 The	 MSO	 problem	 involves	
determining	the	production	quantities	for	each	product	
𝑖 ∈ ℐ	 over	 a	planning	horizon	of	𝑇	periods,	where	 the	
planning	 periods	 are	 represented	 by	 the	 set	 𝒯 =
{1,… , 𝑇}.	The	flow	of	products	through	the	machines	is	
captured	by	the	production	sequence	matrix	𝑨,	a	three-
dimensional	 binary	 matrix	 with	 dimensions	
𝐼 × (𝑀 + 1) × (𝑀 + 1).	 The	 matrix	𝑨	 indicates	 the	
flow	sequence	of	each	product.	Specifically,	if	a	product	
𝑖	 moves	 to	 machine	 𝑚!	 after	 machine	 𝑚",	 then	
𝑨#$!$" = 1,	 and	 0	 otherwise.	 The	 dimensions	 of	 𝑨		
account	 for	 a	 dummy	 initial	 machine	 (denoted	 as	
machine−0)	 and	 a	 dummy	 final	machine	 (denoted	 as	
machine−(𝑀 + 1)),	 included	 for	 all	 products	 𝑖 ∈ ℐ.	
Hence,	𝑚" ∈ {0,… ,𝑀}	and	𝑚! ∈ {1,… , (𝑀 + 1)}.	Note	
that,	 𝑨#%$ = 1	 if	 𝑚	 is	 the	 first	 machine	 and		
𝑨#$('(") = 1	if	𝑚	is	the	last	machine	in	the	production	
sequence	of	product	𝑖.	

Felt	production	has	distinct	characteristics,	such	as	the	
continuous	 nature	 of	 production,	measured	 in	meters	
rather	 than	 discrete	 units.	 Additionally,	 certain	
production	 stages,	 such	 as	 chemicalization,	 impose	
specific	 constraints	 on	machine	 speed,	 requiring	 it	 to	
remain	within	predefined	bounds	to	ensure	successful	
production.	 The	 minimum	 and	 maximum	 production	
capacities	 of	 a	 machine	𝑚	 are	 denoted	 as	 𝐶$$#*	 and	
𝐶$$+, ,	 respectively.	 Furthermore,	 the	 facility	 operates	
for	𝐶-

.+/ 	minutes	during	a	given	period	𝑡.	

	
Table	1.	List	of	Parameters	

ℐ	 Set	of	products		
𝐼	 Number	of	products		
ℳ	 Set	of	machines		
𝑀	 Number	of	machines		
𝒯	 Set	of	periods	
𝑇	 Number	of	periods	(planning	horizon)	
𝑨	 Production	sequence	matrix		

𝐶!!"#	 Maximum	 production	 capacity	 of	
machine	𝑚	per	period		
(meters/period)	

𝐶$
%"&	 Plant	capacity	in	period	𝑡		

(mins/period)	
𝑑'$	 Demand	 of	 product	 𝑖	 in	 period	 𝑡	

(meters)	
𝑢!!"#	 WIP	inventory	capacity	of	machine	𝑚	
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(meters)	
𝑠!"#	 End-product	 inventory	 capacity	

(meters)	
𝑟!$	 Operating	cost	of	machine	𝑚	in	period	

𝑡	(TL/meter)	

𝑓!$	 Fixed	 setup	 cost	 of	 machine	 𝑚	 in	
period	𝑡	(TL/period)	

𝑝'$	 Production	cost	of	product	𝑖	in	period	
𝑡	(TL/meter)	

ℎ'$	 End-product	inventory	holding	cost	of	
product	𝑖	in	period	𝑡	(TL/meter)	

𝑤'!$	 WIP	 holding	 cost	 of	 product	 𝑖	 on	
machine	𝑚	in	period	𝑡	(TL/meter)	

	

The	demand	for	a	product	𝑖	in	a	period	𝑡	is	𝑑'$	meters.	
The	 end-products	 are	 stored	 in	 a	 warehouse	 with	 a	
maximum	storage	capacity	of	𝑠!"#	meters.	A	machine	
𝑚	has	a	WIP	inventory	capacity	of	𝑢!!"#	meters.	

The	continuous	production	of	 felt	 in	meters	 is	directly	
influenced	 by	 the	 operating	 cycles	 and	 speeds	 of	 the	
machines.	A	fixed	setup	cost	𝑓!$	incurs	if	a	machine	𝑚	
operates	in	a	period	𝑡.	Additionally,	𝑟!$	is	the	operating	
cost	associated	with	the	unit	increment	on	the	speed	of	
machine	 𝑚	 in	 a	 period	 𝑡.	 The	 production	 cost	 of	 a	
product	𝑖	in	a	period	𝑡	is	𝑝'$	TL/meter.	The	WIP	holding	
cost	of	product	𝑖	on	machine	𝑚	in	period	𝑡	is	𝑤'!$ ,	and	
the	end-product	inventory	holding	cost	of	product	𝑖	 in	
period	𝑡	is	given	by	ℎ'$ .	

The	MSO	problem	introduced	in	this	work	extends	the	
well-known	 LS	 problem	 by	 accounting	 for	 the	
continuous	 production	 of	 multiple	 products,	 each	
following	 distinct	 machine	 routes	 based	 on	 their	
specific	 processing	 requirements.	 	 The	 corresponding	
felt	 production	 system	 has	 machine	 capacities,	 WIP	
inventory	 limits,	 and	 end-product	 storage	 constraints.	
Additionally,	 the	 operational	 costs	 are	 dependent	 on	
the	 machine	 speeds,	 which	 further	 complicates	 the	
optimization	 process.		 The	 objective	 of	 the	 MSO	
problem	 is	 to	 minimize	 the	 total	 operational	 and	
production	costs	as	well	as	the	inventory	holding	costs.		

The	main	assumptions	of	the	model	can	be	summarized	
as	follows:	

• The	planning	horizon	is	divided	into	periods	of	
equal	length.	

• Multiple	 products	 are	 produced,	 each	
following	 different	 production	 sequences	 in	
the	job	shop	system.	

• The	 product	 demands	 are	 deterministic	 and	
must	be	satisfied	in	each	period.	

• There	 are	 bounds	 on	 the	 WIP	 and	 end-item	
inventories.		

• The	machine	speeds	are	subject	to	both	lower	
and	upper	bounds.	

• Each	 machine	 has	 a	 limited	 production	
capacity.	

• Machines	 incur	 both	 fixed	 setup	 costs	 and	
variable	 operating	 costs	 depending	 on	 their	
speed.	

We	 formally	 introduce	 the	 generic	 MSO	 model	 in	
Section	 3.	 In	 Section	 4.1,	 we	 describe	 the	 felt	
manufacturing	 company	 case.	 Section	 4.2	 focuses	 on	
adapting	 the	 MSO	 model	 to	 the	 specific	 needs	 of	 the	
case	facility.	

3.	Mathematical	Formulation		

In	this	section,	we	formulate	the	MSO	problem	for	a	felt	
production	 system,	 as	 defined	 in	 Section	 2,	 as	 a	MILP	
model.	 Section	 4	 presents	 the	 implementation	 of	 the	
MSO	model	 for	 the	 felt	 manufacturing	 company	 case.	
This	 research	 is	 in	 accordance	with	 the	Research	 and	
Publication	Ethics.	

Table	 2	 summarizes	 the	 decision	 variables	 used	 to	
determine	 the	 optimal	 production	 quantities	 and	
machine	execution	speeds	in	a	felt	production	job	shop.	
In	particular,	the	binary	variable	𝑥!$	 is	one	if	machine	
𝑚	 is	 operating	 in	 period	 𝑡,	 and	 zero	 otherwise.	 If	 a	
machine	𝑚	is	operational,	then	it	produces	𝑦'!$	meters	
of	 product	 𝑖	 in	 period	 𝑡.	 The	 production	 level	𝐶!$	
(measured	 in	 meters)	 represents	 the	 total	 amount	 of	
production	 produced	 by	 machine	𝑚	 in	 period	 𝑡.	 It	 is	
determined	by	 the	machine's	operating	speed	and	 the	
duration	 of	 operation	 during	 that	 period,	 considering	
any	capacity	 limits.	The	corresponding	machine	speed	
𝑣!$	 in	 period	 𝑡	 can	 be	 calculated	 as	 𝑣!$ = 𝐶!$/𝐶$

%"&	
meters/min,	 where	 𝐶$

%"&	 is	 the	 facility	 capacity.	 In	
period	𝑡,	the	end-product	inventory	level	of	product	𝑖	is	
𝑠'$	 meters	 and	 the	 accumulated	 WIP	 inventory	 of	
product	𝑖	in	front	of	machine	𝑚	is	𝑢'!$	meters.		
	
Table	2.	List	of	Decision	Variables	
𝑥!$	 1	if	machine	𝑚	is	operating	in	period	𝑡	

0	otherwise	
𝑦'!$	 Amount	 of	 production	 of	 product	 𝑖	 on	

machine	𝑚	in	period	𝑡	(meters)	
𝐶!$	 Production	level	of	machine	𝑚	in	period	𝑡	

(meters/period)	
𝑢'!$	 WIP	 inventory	 level	 of	product	 𝑖	 in	 front	

of	machine	𝑚	in	period	𝑡	(meters)	
𝑠'$	 End-product	 inventory	 level	 of	 product	 𝑖	

in	period	𝑡	(meters)	
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	 The	Machine	Speed	Optimization	(MSO)	Model:	 	

	
min C 𝑓!$𝑥!$

!∈ℳ,$∈𝒯

+ C 𝑨'!(-./)
'∈ℐ,!∈ℳ,$∈𝒯

𝑝'$𝑦'!$ + C EFC 𝑤'!$𝑢'!$
!∈ℳ

G + ℎ'$𝑠'$H
'∈ℐ,$∈𝒯

+ C 𝑟!$
!∈ℳ,$∈𝒯

𝐶!$	
(1)	

	 s.t.	 	

	 C𝑦'!$
'∈ℐ

= 𝐶!$	 ∀𝑚 ∈ ℳ, 𝑡 ∈ 𝒯	 (2)	

	
C𝑦'!$
$∈𝒯

≤ FC𝑑'$
$∈𝒯

GL C 𝑨'!!#

!#∈ℳ∪{-./}

M	 ∀𝑖 ∈ ℐ,𝑚 ∈ ℳ	

	

(3)	

	 C 𝑨'!!!"𝑦'!!($5/)
!!∈ℳ

  + 𝑢'!"($5/) = 𝑦'!"$ + 𝑢'!"$	 ∀𝑖 ∈ ℐ, 𝑡 ∈ 𝒯,  𝑚6 ∈ ℳ	 (4)	

	 𝑢'!($5/) = 𝑦'!$ + 𝑢'!$  	 ∀𝑖 ∈ ℐ, 𝑡 ∈ 𝒯,𝑚 ∈ ℳ	with	𝑨'7! = 1	 (5)	

	
𝑢'!7 = FC𝑑'$

$∈𝒯

G𝑨'7!	 ∀𝑖 ∈ ℐ,𝑚 ∈ ℳ	
(6)	

	 C 𝑨'!(-./)
!∈ℳ

𝑦'!$ + 𝑠'($5/) = 𝑑'$ + 𝑠'$	 ∀𝑖 ∈ ℐ, 𝑡 ∈ 𝒯	 (7)	

	 𝑠'7 = 0	 ∀𝑖 ∈ ℐ	 (8)	

	 𝐶!$ ≤ 𝐶!!"#𝑥!$	 ∀𝑚 ∈ ℳ, 𝑡 ∈ 𝒯	 (9)	

	 C𝑢'!$
'∈ℐ

≤ 𝑢!!"#	 ∀𝑚 ∈ ℳ, 𝑡 ∈ 𝒯	 (10)	

	 C𝑠'$
'∈ℐ

≤ 𝑠!"#	 ∀𝑡 ∈ 𝒯	 (11)	

	 𝑦'!7  =  0						∀𝑖 ∈ ℐ,𝑚 ∈ ℳ	 (12)	

	 𝑦'!$ , 𝐶!$ ≥ 0	 ∀𝑖 ∈ ℐ,𝑚 ∈ ℳ, 𝑡 ∈ 𝒯	 (13)	

	 𝑢'!$ , 𝑠'$ ≥ 0	 ∀𝑖 ∈ ℐ,𝑚 ∈ ℳ, 𝑡 ∈ 𝒯	 (14)	
	 x!$ ∈ {0,1}	 ∀𝑚 ∈ ℳ, 𝑡 ∈ 𝒯	 (15)	

In	 the	MSO	model,	 the	objective	 (1)	 aims	 to	minimize	
the	 total	 production	 costs,	 WIP	 and	 end-product	
inventory	 holding	 costs	 and	 capacity-dependent	
machine	 setup	 costs.	 Constraints	 (2)	 define	 the	
production	 level	 𝐶!$	of	 machine	 𝑚	 as	 the	 total	
production	 quantity	 in	 period	 𝑡.	 Constraints	 (3)	
establish	 the	 feasibility	 condition	 for	 production	 𝑦'!$	
by	 ensuring	 that	 machine	 𝑚	 is	 included	 in	 the	
production	sequence	of	product	𝑖.	

Each	machine	has	a	WIP	 inventory	positioned	 in	 front	
of	 it.	In	 the	 production	 sequence	 of	 product	 𝑖,	 let	
machine	𝑚6	follow	machine	𝑚/,	i.e.,	𝐴'!!!" = 1.	In	this	
case,	 the	WIP	 inventory	at	machine	𝑚6	 is	 replenished	
by	 the	 output	 of	 machine	 𝑚/	 and	 consumed	 during	
production	 at	 machine	𝑚6,	 as	 expressed	 in	 the	 WIP	
flow	balance	constraints	(4).	If	machine	𝑚	is	the	first	in	
the	 production	 sequence	 of	 product	 𝑖,	 i.e.,	 𝐴'7! = 1,	
then	 the	 initial	 WIP	 flow	 balance	 is	 defined	 by	

constraints	(5).	For	this	initial	machine	𝑚,	the	starting	
WIP	is	assumed	to	fully	meet	the	demand	for	product	𝑖	
as	specified	in	constraints	(6).	

The	 end-product	 inventory	 𝑠'$	 is	 replenished	 by	 the	
production	from	the	 last	machine	𝑚	 in	the	production	
sequence	of	product	𝑖.	i.e.,		𝐴'!(-./) = 1,	and	is	reduced	
by	 the	 demand	 𝑑'$ .	 Constraints	 (7)	 define	 the	 end-
product	 inventory	 balance,	 while	 constraints	 (8)	
ensure	 that	 the	 initial	 inventory	 is	 zero	at	 the	 start	of	
the	planning	horizon.	

Due	 to	 the	 production	 system	 requirements	 and	 the	
technical	 limitations	 of	machine	𝑚,	 there	 is	 an	 upper	
bound	 on	 the	 machine	 capacity	 as	 in	 constraints	 (9).	
The	 capacity	 bound	 is	 set	 to	 zero	 if	machine	𝑚	 is	 not	
operational	 in	 period	 𝑡,	 i.e.,	 𝑥!$ = 0.	 Constraints	 (10)	
and	(11)	establish	upper	bounds	on	the	WIP	inventory	
and	 end-product	 inventory,	 respectively.	 Constraints	
(12)	 imply	 that	 there	 is	 no	 production	 occurs	 in	 the	
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dummy	 period−0.	 Finally,	 constraints	 (13)−(15)	
enforce	 non-negativity	 and	 binary	 conditions	 on	 the	
decision	variables.	

In	 the	 MSO	 model,	 the	 binary	 decisions	 regarding	
machine	 operating	 periods	 dictate	 the	 production	
quantities	in	each	period.	Production	in	the	job	shop	is	
driven	 by	 product	 demand	 and	 is	 constrained	 by	 the	
WIP	and	end-item	inventory	limits.	The	MSO	model	is	a	
mixed-integer	 linear	 programming	 formulation	 and	 is	
classified	 as	 NP-Hard	 due	 to	 the	 combinatorial	
complexity	 associated	 with	 scheduling	 machine	
production.	

4.	Case	Study:	A	Felt	Production	Company	

In	this	section,	we	demonstrate	the	 implementation	of	
the	 MSO	 model	 on	 an	 existing	 felt	 manufacturing	
system	for	a	company	based	in	İstanbul,	Türkiye.		

4.1.	The	Case	Overview			

In	our	case	study,	we	consider	a	textile	company	based	
in	 İstanbul,	 Türkiye,	 that	 has	 been	 producing	 and	
exporting	 felts	 for	 car	 seats	 since	1939.	 The	 company	
operates	 𝑀 = 3	 different	 felt	 production	 machines,	
namely	 Production	 Line	 1	 (PL1,	 𝑚 = 1),	 Production	
Line	2	(PL2,	𝑚 = 2)	and	Cutting	Machine	(CM,	𝑚 = 3)	
as	depicted	in	Figure	1.	The	set	ℳ = {1,2,3}	collects	the	
machine	indices.		

	
Figure	 1.	 Facility	 Layout	 of	 the	 Felt	 Manufacturing	
Company	

PL1	 is	 responsible	 for	 three	 key	 operations:	 mixing,	
carding	 and	 needling.	 These	 mechanical	 operations	
transform	the	raw	materials	into	compact	felt	products.	
The	 output	 of	 PL1	 is	 a	 rolled	 cylinder	 of	 felt.	 In	 PL2,	
compact	 felt	 products	 undergo	 a	 chemical	 process,	
which	 includes	 chemicalization	 and	 drying	 using	 a	
conveyor	 dryer	 machine.	Similar	 to	 PL1,	 the	
chemicalized	felt	 is	rolled	 into	a	cylinder	at	 the	end	of	
PL2.	 CM	 then	 cuts	 the	 cylindrical	 felt	 products	 into	
plaque	 shapes.	 The	 production	 line	 PLX,	 located	

separately,	handles	a	different	process	unrelated	to	the	
felt	production.	The	warehouse,	which	is	located	at	the	
top	 left	 corner	 of	 the	 layout,	 stores	 the	 end-item	
inventory	and	any	excess	WIP	inventory.		

There	 are	 𝐼 = 4	 different	 types	 of	 products	 based	 on	
their	production	line	and	machine	routing,	namely	non-
chemical	cylinder	(𝑖 = 1),	non-chemical	plaque	(𝑖 = 2),	
chemical	cylinder	(𝑖 = 3)	and	chemical	plaque		(𝑖 = 4).	
The	product	indices	are	listed	in	the	set	ℐ = {1,2,3,4}.	

If	 the	raw	material	 follows	only	 the	PL1	process,	 then	
the	 product	 is	 a	 non-chemical	 cylinder.	 If	 the	 PL1	
output	 is	 cut	 into	 plaque	 shapes	 in	 the	 CM,	 then	 the	
product	 is	 a	 non-chemical	 plaque.	 The	 output	 of	 PL1	
can	 also	 be	 further	 processed	 in	 PL2	 by	 adding	 some	
chemicals	to	the	felt,	resulting	in	a	chemical	cylinder.	A	
chemical	 plaque	 can	 be	 produced	 by	 cutting	 the	 PL2	
outputs	 on	 the	 CM.	 	 Thus,	 the	 production	 sequence	
matrix	𝑨	can	 be	 represented	 as	 shown	 in	 Figure	 2.	In	
this	matrix,	𝑚/ = 0	denotes	the	dummy	initial	machine,	
and	𝑚6 = 4	represents	the	dummy	final	machine	in	the	
production	route.	

	
Figure	2.	The	Production	Sequence	Matrix		

The	 company	 decides	 on	 the	 daily	 production	
schedules,	with	a	facility	capacity	𝐶$

%"& = 720	mins	per	
day.	 The	 planning	 horizon	 of	 the	 company	 is	 set	 to	 a	
maximum	of	𝑇 =	 30	days.	The	production	 cost	𝑝'$	 for	
each	product	𝑖	is	assumed	to	be	constant	over	time	and	
is	 given	 by	 𝑝/$ = 6, 𝑝6$ = 8.5, 𝑝8$ = 19.5	 and	 𝑝9$ = 22	
TL/meter.		

The	 end-product	 inventory	 holding	 cost	 ℎ'$	 for	 each	
product	 𝑖	 is	 time-invariant	 and	 given	 by	 ℎ/: =
0.75, ℎ6: = 0.375, ℎ8: = 0.75	and	ℎ9: = 0.375	TL/meter.	
The	 cylinder	 products	 (𝑖 ∈ {1,3})	 have	 higher	 holding	
cost	since	they	require	more	manpower	to	store	in	the	
warehouse.	 All	 product	 types	 are	 assumed	 to	 occupy	
the	 same	volume	 in	 the	 inventory.	 In	 the	 system,	WIP	
inventory	 is	 only	 allowed	 for	 plaque	 products	
(𝑖 ∈ {2,4})	 on	 the	machines	𝑚 ∈ℳ.	 The	WIP	 holding	
cost	𝑤'!$	 is	machine-	and	product-dependent	and	can	
be	 given	 as	 𝑤86$ 	= 	𝑤96$ 	= 	11.4	 TL/meter,	 𝑤68$ 	=
	𝑤98$ 	= 	1.25	TL/meter.	Since,	there	is	no	empty	space	
in	 front	 of	 PL2,	 the	 WIP	 inventory	 is	 carried	 to	 the	
warehouse	 and	 brought	 back	 when	 required.	 Hence,	
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𝑤'6$	cost	is	higher	compared	to	the	other	machines.	For	
all	products,	PL1	is	the	first	machine	in	the	production	
sequence,	 and	we	 assume	 that	𝑤'/$ 	= 	1.25	 TL/meter	
for	 all	 𝑖 ∈ ℐ.	 To	 eliminate	 the	 WIP	 inventory	 for	
products	 𝑖 ∈ {1,3},	 we	 introduce	 WIP	 inventory	
constraints	in	the	MSO	model	(see	Section	4.2).	

To	 meet	 the	 chemical	 cooling	 rate	 requirements,	 the	
machine	 speed	 of	 PL2	 should	 be	maintained	within	 a	
specific	 range.	Additionally,	 the	 company	 uses	 an	
embedded	 crane	 system	 that	 directly	 feeds	 PL2	 with	
the	 outputs	 from	 PL1.	However,	 the	 machine	 speed	
difference	 between	 PL1	 and	 PL2	 does	 not	 allow	 a	
smooth	 production.	 As	 a	 result,	 when	 PL2	 finishes	
processing	the	outputs	from	PL1,	an	operator	retrieves	
the	 required	WIP	 inventory	 from	 the	 warehouse	 and	
feeds	 it	 into	 PL2	 to	 continue	 the	 production	 process	
without	interruption.		

The	WIP	inventory	is	allowed	to	accumulate	in	front	of	
the	CM	(𝑚 = 3)	which	operates	at	a	constant	speed	all	
the	 time.	 The	 machine	 speed	 is	 measured	 in	
meters/period	 and	 a	 unit	 increase	 in	 the	 machine	
speed	of	PL1	results	 in	an	operating	cost	of	𝑟/: = 1.16	
TL,	while	 for	PL2,	 the	cost	 is	𝑟6: = 3.09	TL.	CM	has	no	
speed	 adjustments	 and,	 therefore,	 no	 additional	
operating	 costs	 (𝑟8: = 0).	 These	 operating	 cost	
estimations	 account	 for	 electricity	 consumption	 and	
potential	machine	downtimes.	Higher	machine	 speeds	
increase	 the	 likelihood	 of	machine	 failures,	 leading	 to	
higher	 operational	 risks.	 The	 hourly	 salary	 of	 a	
machine	operator	is	125	TL	in	the	facility.	An	operator	
requires	10	mins	to	set	up	PL1,	2	mins	for	PL2	and	10	
mins	for	CM.	Consequently,	the	fixed	setup	costs	for	the	
machines	are	calculated	as	𝑓/$ 	= 	20.83	TL,		𝑓6$ 	= 	4.17	
TL	and	𝑓8$ 	= 	20.83	TL,	respectively.			

According	 to	 the	 system	 restrictions	 and	 technical	
capabilities	of	the	machines,	the	machine	speed	ranges	
can	 be	 given	 as	 𝑣/: ∈ [5,8]	 meters/min	 for	 PL1,	 𝑣6: ∈
[15,18]	 meters/min	 for	 PL2	 and	 𝑣8: = 5	 meters/min	
for	CM.	The	machine	processing	times	are	independent	
of	 the	 product	 type.	 Then,	 the	 maximum	 production	
capacities	 of	 the	 machines	 can	 be	 given	 as	 𝐶/!"# =
8 × 𝐶$

%"&	meters	for	PL1,		𝐶6!"# = 18 × 𝐶$
%"&	meters	for	

PL2	and	𝐶8!"# = 5 × 𝐶$
%"&	meters	for	CM.	

The	warehouse	can	store	up	 to	a	maximum	of	𝑠!"# =
	7200	 meters	 of	 end-product	 at	 any	 given	 time.	 It	 is	
assumed	that	there	is	sufficient	WIP	capacity	in	front	of	
PL1	 to	 meet	 the	 total	 demand	 for	 all	 products,	 i.e.,	
𝑢/!"# = ∑ 𝑑'$'∈ℐ,$∈𝒯 .	 It	 is	 possible	 to	 transport	 at	 most	
𝑢6!"# = 5400	 	 meters	 of	 WIP	 inventory	 from	 the	
warehouse	 to	 feed	 PL2.	 In	 front	 of	 CM,	 the	 available	
space	can	store	at	most	𝑢8!"# = 3600	meters.	

According	to	the	historical	sales	data,	the	total	demand	
for	 all	 types	 of	 felt	 products	 is	 in	 the	 range	
[100000, 140000]	 meters/month.	 Moreover,	 the	 data	
indicate	that	16%	of	the	total	demand	is	for	product−1,	

4%	is	for	product−2,	64%	is	for	product−3	and	16%	is	
for	product−4.	

In	 the	 existing	 production	 policy	 of	 the	 job	 shop,	 the	
machine	 speeds	 are	 fixed	 without	 alteration.	 PL1	
operates	at	a	speed	of	𝑣/: 	= 	8	meter/min,	PL2	runs	in	
𝑣6: = 	15	 meter/min,	 and	 CM	 has	 a	 speed	 of	 𝑣8: = 	5	
meter/min.	 Given	 that	 machine	 𝑚	 is	 operational	 in	
period	 𝑡	with	 the	 plant	 capacity	 of	𝐶$

%"& 	= 	720	mins.	
Then,	 the	 cycle	 time	 σ!$ = 𝐶!$  / 𝑣!$  mins	 represent	
the	operating	duration	of	machine	𝑚	in	period	𝑡.	Thus,	
the	utilization	of	machine	𝑚	in	period	𝑡	is	calculated	as	
𝛾!$ = 𝜎!$  / 𝐶$

%"& ∈ [0,1].			

To	meet	 the	product	demands,	 the	 company	applies	a	
production	 order	 convention	 as	 product−3,	
product−1,	 product−4,	 and	 product−2.	 That	 is,	when	
there	are	demands	for	both	product−3	and	product−4	
on	 PL1	 in	 a	 period,	 PL1	 will	 first	 process	 product−3	
and	 complete	 its	 production	 before	 switching	 to	
product−4.	

4.2.	The	MSO	Model	for	the	Felt	Company		

The	 felt	 company,	 as	 described	 in	 Section	 4.1,	 has	
specific	 constraints	 in	 the	 MSO	 model	 as	 given	 by	
constraints	(16)−(19).	

	
𝑢/!$ = 𝑢8!$ = 0	 ∀𝑚 ∈ 𝑴, t ∈ 𝑻	 (16)	

𝐶/$ ≤ 8 × 𝐶$
%"&x/:	 ∀t ∈ 𝑻	 (17)	

𝐶6$ ≤ 18 × 𝐶$
%"&x6:	 ∀t ∈ 𝑻	 (18)	

𝐶8$ ≤ 5 × 𝐶$
%"&x8:	 ∀t ∈ 𝑻	 (19)	

In	 particular,	 the	 company	 does	 not	 hold	 any	 WIP	
inventory	 for	 cylinder	 products	 𝑖 ∈ {1,3},	 as	 stated	 in	
constraints	 (16).	 The	 production	 requirements	 and	
machine	 capabilities	 set	 the	 upper	 bounds	 for	 the	
speeds	 of	 PL1,	 PL2,	 and	 CM	 as	 defined	 in	 constraints	
(17),	(18)	and	(19),	respectively.		

The	aim	of	the	MSO	model	is	to	automate	the	decisions	
regarding	 machine	 speeds	 and	 production	 schedules	
while	 minimizing	 the	 total	 production	 cost.	 By	
determining	 the	 optimal	 machine	 speeds,	 the	 MSO	
model	 reduces	 unnecessary	 WIP	 and	 end-item	
inventory,	 resulting	 in	 improved	 production	 costs	
compared	 to	 the	 company's	 existing	 practices.	 After	
embedding	constraints	(16)−(19)	 into	the	MSO	model	
presented	 in	 Section	 3,	 we	 analyzed	 the	 execution	 of	
the	 felt	 manufacturing	 system,	 as	 detailed	 in	 the	
following	section.	

5.	Computational	Results		

In	 this	 section,	 we	 use	 the	 data	 from	 the	 felt	
manufacturing	system	described	in	Section	4.1	and	the	
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adapted	 MSO	 model	 from	 Section	 4.2	 to	 conduct	
computational	 experiments.	We	 present	 an	 optimized	
machine	 speed	 control	 system	 for	 the	 felt	 company	
based	on	the	results	obtained	from	the	MSO	model.		

All	 experiments	 are	 conducted	 online	 using	 Google	
Colab,	 with	 Python	 programming	 language	 and	 the	
Pyomo	package,	utilizing	GNU	Linear	Programming	Kit	
(GNPK)	 optimization	 solver.	 The	 computational	
parameters	are	summarized	in	Table	3.		

	
Table	3.	List	of	Computational	Parameters	

(𝐼,𝑀)	 (4, 3)		
𝑇	 5	periods	

𝐶$
%"&	 720	mins	

Total	
Demand	

U[𝐷; , 𝐷<] 	= [100𝐾, 140𝐾]		

𝑠!"#	 7200	meters	
(𝑢6!"# , 𝑢8!"#)	 (5400, 3600)	meters	

𝑟!$	 (1.16, 3.09, 0)	TL/meter/period	
𝑓!$	 (20.83,	4.17,	20.83)	TL/period	
𝑝'$	 (6, 8.5, 19.5, 22)	TL/meter	
ℎ'$	 (0.75, 0.375, 0.75, 0.375)	TL/meter	
𝑤'!$	 (1.25, 1.25, 1.25, 1.25)	 TL/meter	 for	

𝑚	 = 	1	
(0, 0, 11.4, 11.4)	for	𝑚	 = 	2	
(0, 1.25, 0, 1.25)	for	𝑚	 = 	3		

We	randomly	generate	a	total	demand	within	the	range	
U[𝐷; , 𝐷<]	 and	distribute	 it	across	 the	planning	horizon	
to	determine	the	individual	product	demands,	based	on	
the	historical	demand	pattern	described	in	Section	4.1.	
We	illustrate	the	existing	production	system	of	the	felt	
company	 over	𝑇  =  5	 periods	 in	 Section	 5.1.	 Then,	 in	
Section	5.2,	we	demonstrate	the	automated	production	
planning	and	machine	speed	control	 through	 the	MSO	
model	for	𝑇  =  5	periods.	In	Section	5.3,	we	discuss	the	
enhancements	achieved	by	the	MSO	production	system	
compared	 to	 the	 current	 production	 system.	
Additionally,	 we	 perform	 experiments	 on	 the	 MSO	
model	 under	 varying	 demand	 scenarios	 and	 planning	
horizon	 parameters	 to	 analyze	 its	 computational	
complexity	experimentally.			

5.1.	The	Current	Felt	Production	System		

In	this	section,	we	consider	an	instance	with	a	planning	
horizon	 𝑇  =  5	 periods	 and	 describe	 the	 existing	
production	planning	in	the	felt	company.		

We	 randomly	 generate	 the	 product	 demands	 for	 each	
period	 𝑡	 according	 to	 the	 demand	 pattern	 (16%,	 4%,	
64%,	 16%)	 for	 𝑖 ∈ ℐ,	 respectively.	 The	 product	
demands	 for	 each	 period	 are	 provided	 in	 Table	 4.	 As	
expected,	 the	 highest	 demand	 is	 for	 product−3,	while	
the	lowest	demand	is	for	product−2.		

We	 assume	 that	 the	 facility	 operates	 with	 a	 daily	
capacity	 𝐶$

%"&=	 720	 mins.	 Therefore,	 the	 maximum	
production	capacity	of	PL1	is	𝐶/!"# = 8 × 𝐶$

%"& = 	5760	
meters,	PL2	is	𝐶6!"# = 18 × 𝐶$

%"& 	= 	12960	meters,	and	
CM	is	𝐶8!"# = 5 × 𝐶$

%"& = 	3600	meters.		

	
Table	4.	The	Product	Demands		

𝒅𝒊𝒕	 𝒕	 = 	𝟏	 𝒕	 = 	𝟐	 𝒕	 = 	𝟑	 𝒕	 = 	𝟒	 𝒕	 = 	𝟓	

𝒊	 = 	𝟏	 951	 943	 969	 967	 931	

𝒊	 = 	𝟐	 242	 240	 235	 227	 236	

𝒊	 = 	𝟑	 3789	 3841	 3791	 3794	 3817	

𝒊	 = 	𝟒	 940	 956	 953	 966	 934	

In	the	current	production	system,	all	machines	operate	
at	a	constant	speed	throughout	the	entire	period.	Note	
that,	 PL1	 and	 PL2	 have	 the	 capability	 to	 adjust	 their	
speeds,	but	this	feature	is	not	utilized	by	the	company	
at	present.	 In	 the	existing	system,	 the	machine	speeds	
are	 fixed	 to	 𝑣/: = 	8	 meters/min	 for	 PL1,	 𝑣6: = 	15	
meters/min	 for	 PL2,	 and	𝑣8: = 	5	meters/min	 for	 CM.	
Each	machine	 runs	 at	 its	 fixed	 speed	 to	 complete	 the	
assigned	production	quantity	and	remains	 idle	 for	 the	
remainder	of	the	period.	

There	is	a	limited	storage	area	in	front	of	PL1	and	CM,	
while	there	is	no	space	in	front	of	PL2.	Therefore,	when	
the	 output	 from	 PL1	 is	 insufficient	 to	 meet	 the	
scheduled	production	needs	of	PL2,	 the	WIP	products	
are	retrieved	from	the	warehouse	and	fed	to	PL2	by	an	
operator.	 Additionally,	 if	 a	 machine	 is	 assigned	 to	
produce	multiple	products	 in	a	period,	 the	production	
sequence	 follows	 a	 priority	 order,	 which	 is	 given	 as	
product−3,	product−1,	product−4,	and	product−2.		

There	 is	 no	 end-item	 inventory	 maintained	 in	 the	
system,	 i.e.,	 𝑠'$ = 	0	 for	 all	 𝑖 ∈ ℐ,	 according	 to	 the	
existing	production	system	simulation	results.	Table	5	
summarizes	 the	 WIP	 inventory	 levels	 across	 the	
planning	 horizon.	 We	 assume	 that	 there	 is	 sufficient	
WIP	 stored	 in	 front	 of	 PL1	 for	 each	 product.	 For	
instance,	 the	 initial	 WIP	 inventory	 for	 product−1	 at	
PL1	is	equal	to	its	total	demand,	i.e.,	𝑢//7  =  𝑑// +⋯+
𝑑/? = 951 +⋯+ 931 = 4761.	 This	 initial	 WIP	
inventory	 is	 consumed	 throughout	 the	 planning	
horizon	as	production	progresses	in	PL1.			

The	 production	 route	 for	 product−2	 begins	with	 PL1	
and	 proceeds	 to	 CM.	 Since	 the	 output	 from	 PL1	 in	
period−1	 becomes	 available	 for	 CM	 in	 period−2,	
𝑢687 	= 	806 meters	 of	 WIP	 are	 retrieved	 from	 the	
warehouse	 to	 meet	 the	 period−1	 demand	 for	
product−2.	 Note	 that,	 this	 amount	 is	 higher	 than	 the	
demand	 𝑑6/ 	= 			242	 due	 to	 the	 machine	 capacity	
restrictions	and	the	product	priority	order.		
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PL1	 is	 the	 first	machine	 for	product−3,	and	 its	output	
will	be	available	for	PL2	in	the	following	period.	Then,	
PL2	 initially	 uses	 the	 WIP	 inventory	 of	 𝑢867 	= 	3789	
meters	of	WIP	 inventory	 from	the	warehouse	 to	 fulfill	
the	 demand	 𝑑8/ 	= 			3789	 in	 period−1.	 Similarly,	 the	
output	of	PL1	for	product−4	will	be	available	for	PL2	in	
the	next	period,	and	for	CM	in	the	period	after	that.	To	
account	 for	 the	 time	 gap,	 CM	 stores	 𝑢987 	= 	1896	
meters	 and	 𝑢98/ 	= 	956	 meters	 of	 WIP	 inventory,	
considering	 both	 the	 machine	 capacities	 and	 product	
priorities.	 As	 a	 result,	 the	 total	 amount	 of	 WIP	
inventory	used	by	PL2	and	CM	from	the	warehouse	 is	
8514	meters	for	the	current	production	system.		

	
Table	 5.	 The	 WIP	 Inventory	 Levels	 (meters)	 in	 the	
Current	Production	System		

𝒖𝒊𝒎𝒕	 𝒕	 = 	𝟎	 𝟏	 𝟐	 𝟑	 𝟒	 𝟓	

𝒖𝟏𝟏𝒕	 4761	 3810	 2867	 1898	 931	 0	

𝒖𝟐𝟏𝒕	 1180	 1165	 1105	 1042	 806	 806	

𝒖𝟐𝟑𝒕	 806	 564	 339	 164	 0	 0	

𝒖𝟑𝟏𝒕	 19032	 15191	 11400	 7606	 3789	 0	

𝒖𝟑𝟐𝒕	 3789	 0	 0	 0	 0	 0	

𝒖𝟒𝟏𝒕	 4749	 3796	 2830	 1896	 1156	 116	

𝒖𝟒𝟐𝒕	 0	 0	 0	 0	 0	 0	

𝒖𝟒𝟑𝒕	 1896	 956	 0	 0	 0	 0	

The	machine	 production	 schedule	 is	 given	 in	 Table	 6.	
PL1	 is	 responsible	 for	 producing	 all	 product	 types	
following	 the	 priority	 rule.	 Hence,	 the	 production	
quantities	 for	product−3	 and	product−1,	 i.e.,	𝑦8/$	 and	
𝑦//$ ,	meet	 the	corresponding	demands	at	each	period.	
PL1	has	a	capacity	of	5760	meters	per	period,	and	the	
remaining	capacity	is	allocated	to	product−4	and	then	
product−2.	However,	due	 to	capacity	 limit	of	PL1,	 the	
production	of	product−2	falls	short	of	the	demand.	As	a	
result,	 the	WIP	deficit	 for	product−2	 in	 front	of	CM	 is	
supplemented	 from	 the	 warehouse,	 i.e.,	 𝑢687 	=
	806 meters.		
	
Table	 6.	 The	 Production	 Quantities	 (meters)	 in	 the	
Current	Production	System		

𝒚𝒊𝒎𝒕	 𝒕	 = 	𝟎	 𝟏	 𝟐	 𝟑	 𝟒	 𝟓	

𝒚𝟏𝟏𝒕	 0	 951	 943	 969	 967	 931	

𝒚𝟐𝟏𝒕	 0	 15	 60	 63	 236	 0	

𝒚𝟐𝟑𝒕	 0	 242	 240	 235	 227	 236	

𝒚𝟑𝟏𝒕	 0	 3841	 3791	 3794	 3817	 3789	

𝒚𝟑𝟐𝒕	 0	 3789	 3841	 3791	 3794	 3817	

𝒚𝟒𝟏𝒕	 0	 953	 966	 934	 740	 1040	

𝒚𝟒𝟐𝒕	 0	 0	 953	 966	 934	 740	

𝒚𝟒𝟑𝒕	 0	 940	 956	 953	 966	 934	

Due	 to	 the	 time	 lag	 in	 the	 machine	 production	
schedules,	PL2	utilizes	the	warehouse	WIP	inventory	of	
product−3	 in	 period−1,	 i.e.,	 𝑦86/ = 𝑢867 	= 	3789	
meters.	Similarly,	CM	consumes	the	warehouse	WIP	for	
product−4	 in	 the	 first	 two	 periods.	 To	 replenish	 the	
warehouse	WIP	inventory	for	future	production	needs,	
PL1	 continues	 with	 the	 production	 of	 product−3	 in	
period−5,	 product−4	in	 period−4	 and	 5,	 i.e.,	 𝑦8/? =
	3789,	𝑦9/9 = 	740,	and	𝑦9/? = 	1040.	Additionally,	PL2	
continues	 producing	 product−4	in	 period−5,	 i.e.,	
𝑦96? = 	740.	

The	production	level	of	a	machine	represents	the	total	
production	 in	 a	 period,	 as	 shown	 in	 Table	 7.	 For	
instance,	 the	 production	 level	 of	 machine−3	 in	
period−1	 is	calculated	as	 	𝐶8/ = 𝑦68/ +	𝑦98/ = 	242	 +
	940	 = 	1182	 meters.	 From	 the	 results,	 we	 observe	
that	 PL1	 operates	 at	 its	 maximum	 capacity	 of	 5760	
meters	 in	 all	 periods.	 The	product	 demands	 and	 their	
corresponding	 production	 routes	 suggest	 that	 PL1	
experiences	 the	highest	 load,	 followed	by	PL2	and	CM	
has	 the	 lowest	 load.	 All	 machines	 are	 in	 operation	
during	every	period,	i.e.,	𝑥!$ = 	1	for	all	𝑚 ∈ℳ, 𝑡 ∈ 𝒯.	

	
Table	7.	The	Production	Levels	of	Machines	(meters)	in	
the	Current	Production	System		

𝑪𝒎𝒕	 𝒕	 = 	𝟎	 𝟏	 𝟐	 𝟑	 𝟒	 𝟓	

𝑪𝟏𝒕	 0	 5760	 5760	 5760	 5760	 5760	

𝑪𝟐𝒕	 0	 3789	 4794	 4757	 4728	 4457	

𝑪𝟑𝒕	 0	 1182	 1196	 1188	 1193	 1170	

The	facility	operates	for	𝐶$
%"&=	720	mins	per	day.	Then,	

the	 machine	 cycle	 time	 can	 be	 calculated	 as	 𝜎!$ =
𝐶!$  / 𝑣!$  mins.	 Here,	 𝑣!$	 represents	 the	 constant	
machine	 speeds	 in	 the	 current	production	 system,	 i.e.,	
8,	 15,	 and	 5	 meters/min	 for	 PL1,	 PL2,	 and	 CM,	
respectively.	 Table	 8	 reports	 that	 PL1	has	 the	 highest	
cycle	time,	followed	by	PL2	and	CM	has	the	lowest	cycle	
time.		

	
Table	8.	The	Machine	Cycle	Times	(mins)	in	the	Current	
Production	System		

𝛔𝒎𝒕	 𝒕	 = 	𝟎	 𝟏	 𝟐	 𝟑	 𝟒	 𝟓	

𝛔𝟏𝒕	 0	 720.0	 720.0	 720.0	 720.0	 720.0	

𝛔𝟐𝒕	 0	 252.6	 319.6	 317.2	 315.2	 303.8	

𝛔𝟑𝒕	 0	 236.4	 239.2	 237.6	 238.6	 234.0	
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We	 can	 obtain	 the	 machine	 utilizations	 as	 𝛾!$ =
𝜎!$  / 𝐶$

%"& ∈ [0,1]	 based	 on	 the	 cycle	 times.	 Table	 9	
shows	that	PL1	operates	at	100%	utilization,	PL2	runs	
at	an	average	utilization	of	42%,	and	CM	operates	with	
constant	utilization	of	33%.		
	
Table	 9.	 The	 Machine	 Utilizations	 in	 the	 Current	
Production	System		

𝛄𝒎𝒕	 𝒕	 = 	𝟎	 𝟏	 𝟐	 𝟑	 𝟒	 𝟓	

𝛄𝟏𝒕	 0	 1.00	 1.00	 1.00	 1.00	 1.00	

𝛄𝟐𝒕	 0	 0.35	 0.44	 0.44	 0.44	 0.42	

𝛄𝟑𝒕	 0	 0.33	 0.33	 0.33	 0.33	 0.33	

	
The	 overall	 production	 cost	 includes	 machine	 setup	
costs,	 production	 costs,	 WIP	 and	 end-item	 inventory	
holding	costs,	and	machine	speed	costs,	as	 formulated	
in	 the	 objective	 (1).	 Then,	 the	 overall	 production	 cost	
for	 the	 current	 production	 system	 can	 be	 found	 as	
781,453	TL	for	𝑇  =  5	days.			

The	 company	 aims	 to	 reduce	 the	 overall	 production	
cost	by	minimizing	the	WIP	and	end-item	inventory	in	
the	 system	 through	 dynamic	 machine	 speed	
adjustments.	 To	 achieve	 this,	 the	 company	 plans	 to	
implement	 the	 MSO	 model	 to	 automate	 production	
planning	and	machine	speed	decisions	 throughout	 the	
planning	horizon.	

5.2.	The	MSO	Production	System		

In	this	section,	we	revisit	the	same	instance	introduced	
in	Section	5.1	and	demonstrate	 the	results	of	 the	MSO	
model	for	controlling	the	production	system.		

The	 MSO	 model	 keeps	 end-item	 inventory	 only	 for	
product−4,	i.e.,	s9/ = 1520,	𝑠96 = 564,	𝑠98 = 339,	𝑠99 =
	164,	 𝑠9? = 0,	 and	 𝑠E: = 0	 for	 𝑖	 ∈ {1, 2, 3}.	 The	 MSO	
model	ultimately	aims	 to	 satisfy	 the	product	demands	
primarily	 from	 the	 production	 of	 PL1,	 rather	 than	
relying	on	 the	warehouse	WIP	 inventory,	 as	 shown	 in	
Table	10.			

	
Table	 10.	 The	 WIP	 Inventory	 Levels	 (meters)	 in	 the	
MSO	Production	System		

𝒖𝒊𝒎𝒕	 𝒕	 = 	𝟎	 𝟏	 𝟐	 𝟑	 𝟒	 𝟓	

𝒖𝟏𝟏𝒕	 4761	 3810	 2867	 1898	 931	 0	

𝒖𝟐𝟏𝒕	 1180	 940	 705	 478	 242	 242	

𝒖𝟐𝟑𝒕	 242	 0	 0	 0	 0	 0	

𝒖𝟑𝟏𝒕	 19032	 15191	 11400	 7606	 3789	 3789	

𝒖𝟑𝟐𝒕	 3789	 0	 0	 0	 0	 0	

𝒖𝟒𝟏𝒕	 4749	 4021	 3230	 2460	 2460	 2460	

𝒖𝟒𝟐𝒕	 0	 0	 0	 0	 0	 0	

𝒖𝟒𝟑𝒕	 2460	 0	 0	 0	 0	 0	

However,	 due	 to	 the	 machine	 time	 lags	 in	 the	
production	sequence,	the	MSO	model	also	utilized	some	
warehouse	 WIP	 inventory,	 i.e.,	 𝑢687 = 242,	 𝑢867 =
3789,	 and	𝑢987 = 2460.	We	 observe	 that	 PL2	 and	 CM	
continued	 production	 without	 requiring	 additional	
warehouse	 WIP	 once	 the	 outputs	 of	 PL1	 became	
available.	 Consequently,	 the	 total	 warehouse	 WIP	
inventory	for	PL2	and	CM	was	reduced	to	6491	meters	
which	 represents	 a	 24%	 decrease	 compared	 to	 the	
current	production	system.		

We	 observe	 that	 all	 machines	 operate	 during	 all	
periods,	 i.e.,	 𝑥!$ = 	1	 for	 all	 𝑚 ∈ℳ, 𝑡 ∈ 𝒯.	 The	 MSO	
model	 generates	 the	 production	 schedule	 without	
adhering	 to	 the	 product	 priority	 order	 seen	 in	 the	
current	 system,	 as	 shown	 in	 Table	 11.	 This	 approach	
enables	optimal	production	 level	 allocation	across	 the	
machines,	effectively	minimizing	WIP	 inventory	 in	 the	
system.	 Compared	 to	 the	 current	 production	 system,	
the	MSO	model	directs	CM	to	produce	for	the	end-item	
inventory	 of	 product−4,	 as	 it	 is	 more	 cost-effective	
than	maintaining	WIP	 inventory,	 i.e.,	ℎ'$ ≤ 𝑤'!$	 for	all	
𝑖 ∈ ℐ.	This	adjustment	allows	PL1	 to	efficiently	 supply	
product−2	to	CM	within	capacity	limits,	eliminating	the	
warehouse	WIP	inventory	for	product−2,	i.e.,		𝑢68: = 0	
for	 𝑡	 > 0.	 Unlike	 the	 current	 production	 system,	 the	
MSO	 model	 focuses	 solely	 on	 meeting	 immediate	
product	 demand	 and	 avoids	 building	 up	 warehouse	
WIP	 for	 future	 production,	 i.e.,	𝑦8/? = y9/9 = y9/? =
y96? = 0.	 This	 dynamic	 approach	 results	 in	 more	
streamlined	operations	and	reduced	inventory	costs.	

	
Table	 11.	 The	 Production	 Quantities	 (meters)	 in	 the	
MSO	Production	System		

𝒚𝒊𝒎𝒕	 𝒕	 = 	𝟎	 𝟏	 𝟐	 𝟑	 𝟒	 𝟓	

𝒚𝟏𝟏𝒕	 0	 951	 943	 969	 967	 931	

𝒚𝟐𝟏𝒕	 0	 240	 235	 227	 236	 0	

𝒚𝟐𝟑𝒕	 0	 242	 240	 235	 227	 236	

𝒚𝟑𝟏𝒕	 0	 3841	 3791	 3794	 3817	 0	

𝒚𝟑𝟐𝒕	 0	 3789	 3841	 3791	 3794	 3817	

𝒚𝟒𝟏𝒕	 0	 728	 791	 770	 0	 0	

𝒚𝟒𝟐𝒕	 0	 0	 728	 791	 770	 0	

𝒚𝟒𝟑𝒕	 0	 2460	 0	 728	 791	 770	

Table	12	summarizes	the	total	production	levels	of	PL1,	
PL2	and	CM	at	each	period.	We	note	that	PL1	operates	
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at	 its	maximum	capacity	5760	meters	during	 the	 first	
three	periods.	As	product	demands	are	gradually	met,	
the	 production	 level	 of	 PL1	 decreases	 over	 time.	
Meanwhile,	 PL2	 reveals	 a	 relatively	 stable	 production	
output,	averaging	4264	meters	per	period.		

Conversely,	 CM	 operates	 at	 its	 highest	 capacity	 in	 the	
first	period	to	meet	the	demand	of	product−2	 	 	and	to	
store	 the	 end-item	 inventory	 of	 product−4	 using	 the	
warehouse	 WIP	 inventory.	 	 This	 production	 plan	
overcomes	 the	 time	 lag	 in	 the	 machine	 production	
schedules	and	the	capacity	constraints	of	PL1.	For	𝑡	 >
0,	 the	 production	 system	 is	 driven	 by	 the	 outputs	 of	
PL1,	eliminating	the	need	for	warehouse	WIP	inventory	
for	PL2	and	CM.	

	
Table	12.	The	Production	Levels	of	Machines	(meters)	
in	the	MSO	Production	System		

𝑪𝒎𝒕	 𝒕	 = 	𝟎	 𝟏	 𝟐	 𝟑	 𝟒	 𝟓	

𝑪𝟏𝒕	 0	 5760	 5760	 5760	 5020	 931	

𝑪𝟐𝒕	 0	 3789	 4569	 4582	 4564	 3817	

𝑪𝟑𝒕	 0	 2702	 240	 963	 1018	 1006	

	
The	cycle	time	of	machine	𝑚	in	period	𝑡	is	calculated	as	
σ!$ = min � F$%

G$$&' , 𝐶$
%"&�	 mins,	 where	 𝑣!!'H	 is	 the	

minimum	 speed	 of	 machine	𝑚.	 Table	 13	 reports	 the	
machine	cycle	times	based	on	the	capacities	𝐶!$	in	the	
MSO	production	system.		

For	 instance,	machine−1	 in	period−4	has	a	cycle	time			
𝜎/9 = min � F!(

G!$&' , 𝐶$
%"&� = min �?767

?
, 720� = 720	mins.	

This	means,	PL1	should	operate	throughout	the	entire	
period	at	 a	 speed	higher	 than	 the	minimum	𝑣/!'H = 	5	
meters/min.	

Similarly,	for	machine−1	 in	period−5	we	calculate	the	
cycle	time	as	𝜎/? = min � F!)

G!$&' , 𝐶$
%"&� = min �I8/

?
, 720� =

186.2	mins.	 That	 is,	 PL1	 can	 complete	 the	 production	
for	 period−5	 in	 186.2	 mins	 while	 operating	 at	 the	
minimum	speed	𝑣/!'H = 	5	meters/min.	

	
Table	13.	The	Machine	Cycle	Times	(mins)	 in	the	MSO	
Production	System		

𝝈𝒎𝒕	 𝒕	 = 	𝟎	 𝟏	 𝟐	 𝟑	 𝟒	 𝟓	

𝝈𝟏𝒕	 0	 720.0	 720.0	 720.0	 720.0	 186.2	

𝝈𝟐𝒕	 0	 252.6	 304.6	 305.3	 304.3	 254.5	

𝝈𝟑𝒕	 0	 540.4	 48.0	 192.6	 203.6	 201.2	

The	 machine	 cycle	 time	 𝜎!$	 determines	 the	 speed	 of	
machine	𝑚	as	follows:	

𝑣!$ =
𝐶!$
𝐶$
%"& 	 if	 𝜎!$ = 𝐶$

%"&	 (20)	

𝑣!$ = 𝑣!!'H	 if	 𝜎!$ < 𝐶$
%"&	 (21)	

Table	14	provides	the	machine	execution	speeds	based	
on	 Equations	 (20)	 and	 (21).	 According	 to	 the	 MSO	
model	results,	PL2	and	CM	maintain	constant	speeds	of	
15	 and	 5	 meters/min,	 respectively,	 throughout	 all	
periods.	 On	 the	 other	 hand,	 PL1	 adjusts	 its	 speed	
dynamically	 in	 response	 to	 varying	 product	 demands.	
By	 combining	 the	 data	 from	 Tables	 13	 and	 14,	 the	
operational	 details	 of	 machine	𝑚	 in	 period	 𝑡	 can	 be	
determined,	showing	it	operates	for	𝜎!$	mins	at	speed	
𝑣!$ .	 For	 instance,	 PL1	 operates	 at	 a	 speed	 of	 5	
meters/min	 for	186.2	mins	 in	period−5,	 and	CM	runs	
for	 48	 mins	 at	 a	 constant	 speed	 of	 5	 meters/min	 in	
period−2.	

Table	14.	The	Machine	Speeds	(meter/min)	in	the	MSO	
Production	System		

𝒗𝒎𝒕	 𝒕	 = 	𝟎	 𝟏	 𝟐	 𝟑	 𝟒	 𝟓	

𝒗𝟏𝒕	 0	 8	 8	 8	 7	 5	

𝒗𝟐𝒕	 0	 15	 15	 15	 15	 15	

𝒗𝟑𝒕	 0	 5	 5	 5	 5	 5	

	
Table	 15	 presents	 the	machine	 utilizations,	 calculated	
as	 𝛾!$ = 𝜎!$  / 𝐶$

%"& ∈ [0,1],	 based	 on	 the	 cycle	 times.	
The	 machine	 utilizations	 fluctuate	 in	 alignment	 with	
the	cycle	times	across	the	planning	horizon.	According	
to	the	results,	the	average	utilization	rates	are	85%	for	
PL1,	 39%	 for	 PL2,	 and	 33%	 for	 CM.	 Compared	 to	 the	
current	 production	 system	 described	 in	 Section	 5.1,	
both	PL1	and	PL2	operate	at	lower	utilization	levels	in	
the	 MSO	 model.	 This	 reduction	 is	 attributed	 to	 the	
optimized	 production	 strategy,	 which	 minimizes	 the	
reliance	on	warehouse	WIP	 inventory.	 In	contrast,	 the	
current	system	maintains	higher	utilization	for	PL1	and	
PL2	 due	 to	 its	 focus	 on	 building	 up	WIP	 inventory	 to	
support	future	production	plans.		
	
Table	 15.	 The	 Machine	 Utilizations	 in	 the	 MSO	
Production	System		

𝜸𝒎𝒕	 𝒕	 = 	𝟎	 𝟏	 𝟐	 𝟑	 𝟒	 𝟓	

𝜸𝟏𝒕	 0	 1.00	 1.00	 1.00	 1.00	 0.26	

𝜸𝟐𝒕	 0	 0.35	 0.42	 0.42	 0.42	 0.35	

𝜸𝟑𝒕	 0	 0.75	 0.07	 0.27	 0.28	 0.28	

In	 the	end,	 the	production	schedule	of	 the	MSO	model	
has	an	overall	production	cost	of	777,600	TL	including	
the	 production	 costs,	 WIP	 and	 end-item	 inventory	



ESOGÜ	Müh.	Mim.	Fak.	Dergisi	2025,	31(1),	xx-xx	 	 J	ESOGU	Eng.	Arch.	Fac.	2025,	31(1),	xx-xx	

13	
	

holding	 costs,	 and	 the	 costs	 associated	 with	 altering	
machine	speeds.		

5.3.	Comparison	of	the	Current	and	MSO	Production	
Systems		

When	 comparing	 the	 results	 presented	 in	 Tables	 5-9	
for	 the	 current	 production	 system,	 and	 Tables	 10-15	
for	 the	 MSO	 production	 system,	 we	 observe	 a	
significant	 improvement	 over	 a	 planning	 horizon	 of	
𝑇  =  5	 days.	 Firstly,	 the	 MSO	 model	 achieves	 a	 cost	
reduction	 of	 3853	 TL,	 bringing	 the	 total	 cost	 down	
to	777,600	 TL.	 This	 reduction	 is	 largely	 attributed	 to	
the	 optimization	 of	machine	 speeds,	which	minimizes	
WIP	 inventory,	 reduces	 holding	 costs,	 and	 eliminates	
the	need	for	excessive	warehouse	storage.		

In	 terms	 of	 production	 strategy,	 the	 current	 system	
relies	on	building	WIP	inventory	for	future	production,	
leading	 to	 higher	 machine	 utilizations	 but	 increased	
inventory	 holding	 costs.	 As	 a	 result,	 the	 total	
warehouse	WIP	 inventory	 used	 is	8514	meters	 in	 the	
current	system.	

On	the	other	side,	the	MSO	model	implements	dynamic	
scheduling	 and	 machine	 speed	 control,	 aligning	
production	 closely	 with	 demand	 and	 minimizing	
unnecessary	 inventory	 buildup.	 Therefore,	 the	 MSO	
model	 reduces	 warehouse	 WIP	 inventory	
by	24%	to	6491	meters,	 prioritizing	 direct	 production	
to	meet	demands.		

When	 comparing	 the	 machine	 utilizations,	 PL1	
operates	 at	 100%	 utilization	 at	 its	 highest	 speed	
throughout	the	planning	horizon	in	the	current	system.	
Since	 PL1	 is	 the	 first	 machine	 in	 the	 production	
sequence	for	all	products,	its	utilization	determines	the	
throughput	 capacity	 of	 the	 entire	 production	 system.	
As	 a	 result,	 the	 throughput	 capacity	 cannot	 be	
increased	 in	 the	 current	 system	 because	 PL1	 is	 fully	
utilized	throughout	the	planning	horizon.	

In	 contrast,	 the	 MSO	 model	 optimizes	 the	 machine	
speeds	 across	 the	 system,	 successfully	 reducing	 the	
utilization	 of	 PL1	 from	 100%	 to	 85%,	 and	 PL2	 from	
42%	to	39%.	The	utilization	of	CM	remains	at	33%,	as	
it	 is	 not	 designed	 for	 speed	 adjustments.	 With	 the	
available	capacity	in	PL1,	the	throughput	of	the	system	
can	 be	 increased	 without	 the	 need	 for	 additional	
investments	 in	 new	 machines	 or	 workers.	 This	
optimization	approach	not	only	increases	efficiency	but	
also	 enhances	 the	 overall	 production	 capacity	 within	
the	existing	system.	

We	further	experimented	with	the	MSO	model	to	assess	
potential	 improvements	 on	 the	 current	 system.	 In	 the	
case	presented	in	Sections	5.1	and	5.2,	the	throughput,	
or	total	demand	for	all	products,	was	35669	meters.	By	
successfully	reducing	the	utilization	of	PL1,	the	critical	
machine	 in	 the	 system,	 to	85%,	we	 explored	different	
throughput	 levels.	 We	 observed	 that	 the	 throughput	

can	reach	a	maximum	of	39449	meters	without	causing	
infeasibility,	 representing	 an	 11%	 increase	 in	
throughput.	At	this	new	throughput	level,	the	machine	
utilizations	are	86%	for	PL1,	43%	for	PL2,	and	36.4%	
for	CM.	This	demonstrates	that	the	current	system	has	
the	 capacity	 to	 produce	 11%	more	 if	machine	 speeds	
are	 optimized	 using	 the	 MSO	 model	 for	 a	 5-day	
planning	 horizon.	 As	 a	 result,	 the	 productivity	 and	
profitability	 of	 the	 company	 can	be	 enhanced	without	
the	need	for	additional	investments	in	new	machines	or	
work	shifts.	

In	 this	 scenario,	 we	 noted	 that	 the	 machines	 are	 not	
fully	utilized,	indicating	that	the	critical	constraints	are	
the	limits	of	the	WIP	and	end-item	inventory	capacities.	
Therefore,	 the	 throughput	 of	 the	 system	 could	 be	
further	 improved	 if	 these	 inventory	 capacities	 are	
expanded.	

In	our	final	experiment,	we	run	the	MSO	model	with	a	
one-hour	time	limit	for	various	planning	horizons	𝑇	 ∈
{20,… , 180}	 and	 different	 demand	 parameters	 to	
investigate	 its	 computational	 complexity	
experimentally.	 Based	 on	 our	 earlier	 experiments,	we	
test	 two	 demand	 levels:	 the	 current	 level	 of	 35669	
meters	per	5	days,	and	a	higher	level	of	39449	meters	
per	 5	 days.	 Figure	 3	 shows	 the	 computational	
complexity	of	the	MSO	model	graphically.		

	

	
Figure	3.	Computational	Complexity	of	the	MSO	model		

The	 experiments	 reveal	 that	 execution	 time	 increases	
as	 the	 planning	 horizon	 lengthens,	 reaching	 the	 one-
hour	time	limit	at	𝑇	 = 	180	days.	The	demand	level	has	
a	 slight	 impact	 on	 computational	 time,	 with	 slightly	
longer	 execution	 times	 observed	 for	 high-demand	
scenarios.	 The	 MSO	 model	 can	 generate	 an	 optimal	
production	plan	with	machine	speeds	in	under	5	mins	
for	𝑇	 ≤ 	140	days.	

Consequently,	 the	 MSO	 model	 demonstrates	 a	 more	
efficient	approach,	offering	cost	savings	and	 improved	
resource	 utilization	 while	 reducing	 dependency	 on	
warehouse	WIP	 inventory.	The	complexity	of	 the	MSO	
model	 is	 acceptable,	 as	 it	 can	 generate	 the	 optimal	
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production	 plan	 and	machine	 speeds	within	 one	 hour	
for	a	six-month	planning	horizon.	This	makes	the	MSO	
model	suitable	 for	practical	 implementation	 in	the	 felt	
company.	

6.	Conclusions		

In	 this	 work,	 we	 explored	 an	 extension	 of	 the	 well-
known	CLSP	specifically	designed	for	a	felt	production	
system.	 Unlike	 discrete-item	 manufacturing,	 felt	
production	involves	producing	rolls	of	felt	measured	in	
meters.	 Besides,	 the	 felt	 production	 includes	 chemical	
operations,	 necessitating	 machines	 to	 operate	 within	
specific	speed	limits	to	ensure	proper	processing.	

Customer	 demand	 can	 be	 met	 without	 backlogging	
while	 eliminating	 unnecessary	 WIP	 and	 end-product	
inventory	 by	 optimally	 controlling	 machine	 speeds	
during	 each	 period.	 Implementing	 such	 intelligent	
production	 control	 fosters	 a	 sustainable	 production	
system,	as	operating	machines	at	lower	speeds	reduces	
both	energy	consumption	and	machine	downtimes.	

We	addressed	a	felt	production	system	constrained	by	
machine	speed	limits	and	bounded	by	end-product	and	
WIP	 inventory	 levels.	 To	 optimize	 this	 system,	 we	
proposed	 an	 MSO	 model	 designed	 to	 address	 a	
deterministic	demand	pattern	within	 a	 finite	planning	
horizon.	 Our	 MSO	 model	 was	 tailored	 for	 a	 felt	
manufacturing	company	operating	in	Istanbul,	Türkiye.	
For	 this	 case	 study,	 we	 conducted	 computational	
experiments	 to	 demonstrate	 the	 effectiveness	 of	
automated	production	system	control.	

In	 the	 current	 production	 system,	 machine	 speeds	
remain	constant	throughout	the	planning	horizon.	The	
machines	handle	multiple	products	within	their	limited	
capacities.	When	a	machine's	capacity	is	insufficient	to	
meet	 the	 multi-product	 demand	 in	 a	 given	 period,	 a	
predefined	 priority	 order	 of	 product-3,	 product-1,	
product-4,	 and	 product-2	 is	 applied.	However,	 this	
prioritization	can	lead	to	deficiencies	in	WIP	inventory	
during	 the	production	 sequence,	 necessitating	 the	use	
of	 existing	WIP	 inventory	 stored	 in	 the	warehouse	 to	
fulfill	 product	 demand.	 This	 approach	 increases	 the	
requirement	for	storage	space	and	elevates	warehouse	
inventory	holding	costs	over	time.	

Alternatively,	 the	 MSO	 model	 dynamically	 adjusts	
machine	speeds	to	ensure	a	smooth	product	flow	in	the	
production	sequence	while	minimizing	WIP	inventory.	
Unlike	 the	 current	production	system,	 the	MSO	model	
prioritizes	 storing	 end-item	 inventory,	 thereby	
eliminating	 the	 reliance	on	warehouse	WIP	 inventory.	
The	 results	 presented	 in	 Section	 5.2	 align	 with	 this	
objective,	 as	 the	warehouse	WIP	 inventory	 is	 utilized	
only	 at	𝑡	 = 	0	to	 initiate	 production.	 Throughout	 the	
planning	horizon,	the	WIP	inventory	levels	for	PL2	and	
CM	 remain	 at	 zero.	 As	 the	 initial	 machine	 in	 the	

production	 sequence,	 PL1	 strategically	 retains	 WIP	
inventory	to	trigger	production	across	the	system.		

The	 experimental	 setup	 for	 the	 felt	 manufacturing	
company	 includes	 three	 machines	 and	 four	 products.	
Computational	analysis	 shows	 that,	 in	 this	 setting,	 the	
MSO	 model	 can	 generate	 an	 optimal	 six-month	
production	 plan	 with	 machine	 speed	 adjustments	 in	
less	 than	 an	 hour.	 Consequently,	 the	 MSO	 model	
effectively	 automates	 machine	 speed	 control	 and	
production	 scheduling	 for	 the	 existing	 felt	 production	
system.	

The	MSO	problem,	 formulated	as	a	MILP	in	this	study,	
is	 NP-Hard.	 Future	 research	 could	 explore	 heuristic	
solution	approaches,	such	as	the	relax-and-fix	heuristic,	
to	 obtain	 near-optimal	 solutions	 within	 a	 reasonable	
computation	time.	Additionally,	the	MSO	problem	could	
be	 adapted	 to	 other	 continuous	 production	 systems,	
such	as	float	glass	manufacturing.	Since	backlogging	is	
currently	not	permitted	 in	 the	MSO	model,	a	potential	
extension	 could	 include	 a	 backlogging	 mechanism	 to	
address	 the	 lot	 sizing	 and	 scheduling	 problem	 more	
comprehensively.	
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